Skip to content

How The Future Is Really Built

2014 October 19

The future, in retrospect, always seems inevitable.  When Steve Jobs unveiled a sleek new device, it felt like it was just meant to be.  When Elon Musk gives an interview, it almost seems as if he had dreamt Tesla up in his childhood bedroom and only gotten around to it more recently. Yet that’s not how it happens.

In Six Degrees, network scientist Duncan Watts stresses that discovery is done in a messy and ambiguous world, by “real people who suffer the same kind of limitations and confusions as anybody else.”  It is, above all, more a matter of persistence than epiphany.

And that’s something that we often forget.  Brilliance doesn’t arrive on a rainbow, but can come in the guise of an idiot, muttering incoherently about something nonsensical.  Yet somewhere along the line, someone noticed that there was wheat amongst the chaff and helped midwife the idea.  It is those stories, not fairy tales, that should guide us.

The Not So Prodigal Son

Near the turn of the 20th century, the son of a well-to-do industrialist, recently graduated from university, found himself poorly married with a young child and unable to find gainful employment.  With nothing better to do, he spent much of his time reading and discussing wild ideas with a small group of friends that called themselves the Olympia Academy.

Yet despite the grandiose name, which was more of an inside joke than anything else, the Olympia Academy was mostly just a bunch of guys hanging out and chewing the fat.  Distressed about his situation and his prospects, the young man became deeply morose and wrote to his sister in a letter:
 

What depresses me most is the misfortune of my poor parents who have not had a happy moment for so many years.  What further hurts me deeply is that as an adult man, I have to look on without being able to do anything.  I am nothing but a burden to my family…It would be better off if I were not alive at all.

 
His father would pass away a few years later.  By that time, the young Albert Einstein did find work as a lowly government clerk.  Soon after, in 1905, he unleashed four papers in quick succession that would change the world.  It was an accomplishment so remarkable that it is now often referred to as his miracle year.

Another seven years passed before Einstein finally got a job as a university professor and it wasn’t until 1919, when a solar eclipse confirmed his oddball theory, that he became the world famous icon we know today.  His work lives on in everything from nuclear power to digital devices like iPhones and GPS navigation.

The Mediocre Child

As the least talented scion of one of Europe’s richest families, Ludwig Wittgenstein was supposed to go into the family business rather than indulge in individual pursuits.  To that end, he studied engineering in Berlin and then entered Manchester University to learn the emerging field of aeronautics.

It was there that he attended some lectures by J.E. Littlewood and became interested in pure mathematics and logic.  Before long, he came across the work of Bertrand Russell and became obsessed.  He stayed at Manchester long enough to earn both a degree and a patent for a jet engine, then set off to Cambridge to seek out Russell.

Wittgenstein arrived at Russell’s chambers unexpectedly and unannounced, then immediately began arguing with the eminent scholar.  As if that wasn’t enough, he began attending his lectures and following him home, pestering him along the way.  Russell would write at the time:
 

My German friend threatens to be an affliction, he came back with me after the lecture & argued till dinner-time –obstinate and perverse, but I think not stupid

 
Despite Wittgenstein’s maddening behavior, Russell continued to work with and mentor the young man.  The problem they were trying to solve was the immense hole that Russell had discovered in the fabric of logic and he felt Wittgenstein had both the gumption and the brilliance to help him close it up.

Alas fate, in the form of World War I, intervened and Wittgenstein entered the Austrian army.  He continued to work on the problem in his spare time and in 1915 sent a note to Russell that he had a breakthrough.  After that, Wittgenstein disappeared and Russell feared that Wittgenstein, along with his solution to the problem, had been lost to history.

A few years later, Russell received a card from an Italian prison camp.  Wittgenstein, still holding the key to the future of mathematical logic, was still alive but in captivity and unable to complete his work.  John Maynard Keynes, who was a delegate at the Versailles peace conference, arranged for special privileges and writing supplies.

Wittgenstein emerged from his internment with a manuscript and, again with Russell’s help, the Tractatus Logico-Philosophicus, was published.  It was immediately recognized as one of greatest works in the history of philosophy.  Wittgenstein, still in his early twenties, was now a living legend.

A Universal Computer

Feeling that he had solved the problem of mathematical logic, Wittgenstein disappeared once again to become a grade school teacher in an obscure mountain village.  Yet the Tractatus had caused a stir and a group of men, which came to be known as the Vienna Circle, met regularly to discuss Wittgenstein and his ideas.

However, the hole in logic, called Russell’s paradox, remained open.  A young student named Kurt Gödel began attending the Vienna Circle meetings and became intrigued by the problem.  Unlike Wittgenstein, however, he did not believe the hole could ever be closed and produced his incompleteness theorems, which proved that to be the case.

The ripples caused by Gödel’s work caused soon reached Cambridge and Alan Turing, then an undergraduate, seized on his methods to create an imaginary machine which, using just ones and zeroes, could perform any possible computation.  Turing’s work became central to the British effort to break the German Enigma codes and gave birth to the very real computers we use today.

After completing his undergraduate work, Turing was recommended by John von Neumann for a fellowship at Princeton University, where Einstein and Gödel now resided at the Institute for Advanced Study.  It was von Neumann who created a functional architecture for Turing’s imaginary machine and built an early version of it.

After Princeton, Turing went back to Cambridge and found that Wittgenstein had returned as well.  They attended each other’s lectures and argued incessantly.

The Path To The Future

The story I just told is a confusing one, all the more so considering the parts I left out.  The path to our modern world was not a straight one, but a tangled mess of intersecting threads. Where we would expect to see an organized chain of lone geniuses working quietly in isolation, we inevitably find a crisscross of interactions.

When we look at how our modern age came about, two themes emerge.  One is mentorship. Even a genius like Wittgenstein needed a Bertrand Russell who, although secure in his own historic legacy, found the patience to suffer the young man’s maddening eccentricities and help him to realize his potential.

The second is what John Hagel calls creation spaces.  The meetings of the Cambridge Apostles, which Russell and Keynes regularly attended, Einstein’s informal Olympia Academy and the Vienna Circle all probably seemed like idle chatter to outsiders, but they were essential to the process of discovery.  We live in a world of the visceral abstract, where imaginary ideas can be more consequential than hard facts.

So while some complain that we were promised flying cars but got 140 characters instead, we should remember that 140 characters are far more important.  It is through the ability to communicate and interact that we build the future.  Throughout history, that has been the one truth that has formed the basis for all of human discovery.

Yet today there is a crucial difference.  Our creation spaces are no longer tied to a particular time or place, like Cambridge, Vienna or Princeton, and no longer available only to those with the privilege and means to participate in them.  We can make discovery and accomplishment a universal opportunity, if only we can muster the desire and the will to make it so.

– Greg
 

8 Responses
  1. jean-louis permalink
    October 20, 2014

    Hi Greg,
    Anyone having filed a patent has gone through a lot of this. Invention is not the glamourous process people magazine try to scenarios.

    Great book by Berkun “The myths of innovation”.

    Best

    Greg Reply:

    That is a great book! Thanks Jean-Louis.

    – Greg

  2. October 20, 2014

    This is a very cool article. Brilliance is often part and parcel with personalities that are not often understood or appreciated by those who have to be around them daily. Society is frequently known to mock them, as they are seen as dreamers, compulsive, non-productive drains on families and friends. In reality, many of these, that we now see as great minds, may in fact have been on the Autistic scale, such as Aspergers.

    So, if you work with or have a family member that is considered “different”, please be kind to them. They don’t set out to be challenging and they may very well hold that spark of brilliance that will change the world for the better.

    Greg Reply:

    Good point. Thanks David.

    – Greg

    Robert Neuschul Reply:

    David

    “many of these, that we now see as great minds, may in fact have been on the Autistic scale, such as Aspergers.”

    Notwithstanding your very important point about care and compassion: our modern society has an over-obsession with quantifying and labelling. Worse still, we confuse a knowledge of quanta and labels with understanding.

    Given that in almost all cases human beings lie somewhere on a spectrum of performance and capability [the normal distribution curve] how then do we ‘label’ someone who lies at the opposite end of the spectrum from ‘autism’? What are the attributes of that behavioural type? Why do we not label them in an equally nasty and derogatory manner?

  3. October 20, 2014

    I find that simple solutions to obvious problems represent the majority of the “innovations” that contribute to creating the future. These range all the way from the mundane like the Tide “spot stick” and “Swiffer” to the more sophisticated Smart Phone and the myriad of “sensors” on cars and shortly to be embedded in people.

    Greg Reply:

    Thanks for sharing, Robert.

    – Greg

  4. Robert Neuschul permalink
    October 20, 2014

    An alternative view from the past 🙂

    “To arrive at the simplest truth, as Newton knew and practised, requires //years of contemplation//. Not activity. Not reasoning. Not calculating. Not busy behaviour of any kind. Not reading. Not talking. Not making an effort. Not thinking. Simply //bearing in mind// what it is one needs to know. And yet those with the courage to tread this path to real discovery are not only offered practically no guidance on how to do so, they are actively discouraged and have to set about it in secret, pretending meanwhile to be diligently engaged in frantic diversions and to conform with the deadening personal opinions which are being continually thrust upon them.

    In these circumstances, the discoveries that any person is able to undertake represent the places where, in the face of induced psychosis, he has, by his own faltering and unaided efforts, returned to sanity. Painfully, and even dangerously, maybe. But nonetheless returned, however furtively.”

    George Spencer-Brown.
    Laws of Form; Appendix 1.
    [he was probably Russell’s last great mentee, and also worked under Wittgenstein as a postgrad at Cambridge].

Comments are closed.